Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Conservation management practices often produced positive but limited desirable outcomes in US Southeast sandy soils, likely due to their intrinsically low clay contents that constrain the soil's capacity to preserve organic carbon (C) and nutrients. In the field, we tested the effectiveness of a novel approach, that is, clay soil amendment, to improve sandy soils. In October 2017, clay‐rich soils (25% clay) were spread at 25 metric tons ha−1 and tilled onto a sandy soil (1.9% clay) in the field, which was further mixed by light tillage at 0‐ to 15‐cm depth, followed by planting winter cover crop mixtures (cereal rye, crimson clover, and winter pea). The crop rotation was cotton and corn with cover crop mixtures planted in the winter fallow season. Soils (0–15 cm) were collected in August 2021 and subjected to physio‐biochemical analyses. Clay amendment increased soil clay content to 3.4%, which improved nitrogen (N) availability by 51% but inhibited the activities of C (β‐d‐cellubiosidase [CB]; β‐xylosidase [BX];N‐acetyl‐β‐glucosaminidase [NAG]) and N (leucine aminopeptidase [LAP]) cycling enzymes, resulting in up to 78% reduction in microbial respiration. A follow‐up kinetic study on BG and LAP enzymes suggested that clay addition can have different impacts on enzymes with diverse biological origins through distinct mechanisms. Clay addition can potentially improve sandy soils by stabilizing the organic inputs in soils. However, more research is required to understand its long‐term impacts making this approach practical.more » « less
-
The Q10 coefficient is the ratio of reaction rates at two temperatures 10°C apart, and has been widely applied to quantify the temperature sensitivity of organic matter decomposition. However, biogeochemists and ecologists have long recognized that a constant Q10 coefficient does not describe the temperature sensitivity of organic matter decomposition accurately. To examine the consequences of the constant Q10 assumption, we built a biogeochemical reaction model to simulate anaerobic organic matter decomposition in peatlands in the Upper Peninsula of Michigan, USA, and compared the simulation results to the predictions with Q10 coefficients. By accounting for the reactions of extracellular enzymes, mesophilic fermenting and methanogenic microbes, and their temperature responses, the biogeochemical reaction model reproduces the observations of previous laboratory incubation experiments, including the temporal variations in the concentrations of dissolved organic carbon, acetate, dihydrogen, carbon dioxide, and methane, and confirms that fermentation limits the progress of anaerobic organic matter decomposition. The modeling results illustrate the oversimplification inherent in the constant Q10 assumption and how the assumption undermines the kinetic prediction of anaerobic organic matter decomposition. In particular, the model predicts that between 5°C and 30°C, the decomposition rate increases almost linearly with increasing temperature, which stands in sharp contrast to the exponential relationship given by the Q10 coefficient. As a result, the constant Q10 approach tends to underestimate the rates of organic matter decomposition within the temperature ranges where Q10 values are determined, and overestimate the rates outside the temperature ranges. The results also show how biogeochemical reaction modeling, combined with laboratory experiments, can help uncover the temperature sensitivity of organic matter decomposition arising from underlying catalytic mechanisms.more » « less
-
Abstract TheQ10coefficient is the ratio of reaction rates at two temperatures 10°C apart, and has been widely applied to quantify the temperature sensitivity of organic matter decomposition. However, biogeochemists and ecologists have long recognized that a constantQ10coefficient does not describe the temperature sensitivity of organic matter decomposition accurately. To examine the consequences of the constantQ10assumption, we built a biogeochemical reaction model to simulate anaerobic organic matter decomposition in peatlands in the Upper Peninsula of Michigan, USA, and compared the simulation results to the predictions withQ10coefficients. By accounting for the reactions of extracellular enzymes, mesophilic fermenting and methanogenic microbes, and their temperature responses, the biogeochemical reaction model reproduces the observations of previous laboratory incubation experiments, including the temporal variations in the concentrations of dissolved organic carbon, acetate, dihydrogen, carbon dioxide, and methane, and confirms that fermentation limits the progress of anaerobic organic matter decomposition. The modeling results illustrate the oversimplification inherent in the constantQ10assumption and how the assumption undermines the kinetic prediction of anaerobic organic matter decomposition. In particular, the model predicts that between 5°C and 30°C, the decomposition rate increases almost linearly with increasing temperature, which stands in sharp contrast to the exponential relationship given by theQ10coefficient. As a result, the constantQ10approach tends to underestimate the rates of organic matter decomposition within the temperature ranges whereQ10values are determined, and overestimate the rates outside the temperature ranges. The results also show how biogeochemical reaction modeling, combined with laboratory experiments, can help uncover the temperature sensitivity of organic matter decomposition arising from underlying catalytic mechanisms.more » « less
An official website of the United States government

Full Text Available